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Electromagnetic Theory 
Prof. Ruiz, UNC Asheville, doctorphys on YouTube 
Chapter E Notes. Ampère's Law, Mini Reviews, and Four-Vectors 

E1. Ampère's Law (from Intro Physics II and our Result from Class D). 
 
Courtesy Stannered/Wacaplet, Wikimedia, showing the 
right-hand rule for the direction of the magnetic field. 
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We can express the magnetic field B as a loop line integral 
wrapping around the wire. Let's do this backwards. We 
then arrive at Ampère's Law in integral form. 
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This is the integral we can use to calculate B for the current in the wire. You did this in 
your introductory physics class. Since the magnetic field lines wrap around on 
themselves, if we swallow up a magnet like we did for a charge in Gauss's Law, we get 
zero. There are no piercings of the magnetic field outward through the surface. 

0B d A
→ →

⋅ =∫∫�  

This is another Maxwell equation. Here is a summary of what we have so far where we 
put the surface integrals first. The first is Gauss's Law, an alternate form of Coulomb's 
Law. The third is Ampère's Law. The second law is not associated with anyone in 
particular. But it involves the magnetic field and Ampère is a key figure. 
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The Big Three so Far. 

Charles Augustin de 
Coulomb (1736-1806) 

Johann Carl Friedrich 
Gauss (1777-1855)    

André Marie Ampère 
(1775-1836) 

   

From the School of Mathematics and Statistics, University of St. Andrews, Scotland 
 

E2. Gauss's Law and Ampère's Law (Review from Intro Physics II). 
 
Let's apply Ampère's Law to a thick wire with constant current density. In reality, current 
tends to flow along the outer surface of the conductor since the electrons repel each 
other. Imagine a wire cable consisting of a bundle of little wires with thin insulations that 
we can neglect. We take the radius of the cable to be R and the current density to be J. 
 
We will apply Gauss's Law at the same time to a sphere of constant charge density. In 
reality charge will move to the surface of a conducting sphere. So we are considering 
here an ideal material with uniform charge throughout. We take the radius of the sphere 

to be R and the charge density ρ. 
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What happens if r = R or r > R? 
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E3. Lorentz Force Problems (Review from Intro Physics II). 
 
We will review two problems from your introductory physics course. One will involve the 
electric field and the other will consider a magnetic field. 
 
Start with the general form for the Lorentz force. 
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1) Constant Electric Field (Review from Intro Physics II) 
 
Here there is only an electric field, which is pointing in the positive y direction. 
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Integrating again to get x and y results in the two following equations. 
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With our initial conditions for the position, these simplify. 
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PE1 (Practice Problem).  Taking the horizontal length of each plate to be l , find the 

coordinates of the charge as it just leaves the plate region (see figure). Also find the 
magnitude and direction of the final velocity as the charge leaves the plate region. 
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2) Constant Magnetic Field (Review from Intro Physics II) 

Start with the general form for the Lorentz force: ( )
d p

F q E v B
dt

→ → → →

= = + ×

��

. 

 
Here there is only a magnetic field, which points into the page. 
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The motion is in a circle. 
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The angular frequency 

v
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ω =  is found 

to be a constant! 
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This is called the Larmor frequency. Shooting charged particles perpendicular into a 
region of constant magnetic field allows one to measure the charge-to-mass ratio q/m 
from the strength of the magnetic field and the angular frequency. 

 
Courtesy CERN. "A classic bubble chamber 
photograph. Millions of such interactions were 
studied during the 1960s and 1970s." CERN 
 
CERN is the European Organization for 
Nuclear Research, established in 1954. 
Headquarters is near Geneva. 
 
At the left you see particle tracks where the 
circular paths indicate motion of charged 
particles in a magnetic field. Positive charges 
circle one way and negative the opposite.
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E4. Work and Kinetic Energy (Review from Intro Physics I). 
 
The simplest case is applying a constant force along the direction of motion.  

 
The typical case is one where friction does 
an equal and opposite amount of work and 
the speed is constant. In this case, the work 
done by a person pushing a block with force 
F and traveling a distance d is  
 

W Fd= . 
 
For our figure we can substitute to arrive at 
the following equation. 
 

W Fd mgdµ= =  

Courtesy Wikimedia. Photo 
released by the US Navy. 
Photo taken by Damon J. 
Moritz. 

 
In the photo, an Office 
Movers employee pushes 
boxes out of the office of the 
Secretary of the Navy as a 
Yeoman studies for a college 
course (from Wikimedia). 

 
Work is money. If you were 
paying someone to work for 
you, we would not want to 

give them money for doing no work. Below are two examples of doing no work. 
 
1) Walking around with outstretched arms pushing air like a zombie: F = 0. 

0 0W Fd d= = ⋅ =  
 
2) Pushing against a wall with a force F but there is no distance traveled: d = 0. 

0 0W Fd F= = ⋅ =  
 
3) Someone just standing around: F = 0 and d = 0. 

0 0 0W Fd= = ⋅ =  

 
In each case the work is zero. So the definition of work in physics makes sense from a 
practical point of view. 
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PE2 (Practice Problem). You pay workers to push boxes (crates) containing 
appliances in a large warehouse to the loading dock. Some crates need more force than 
others. But some crates are farther from the loading end. What is a reasonable amount 
of work that a worker can do in one hour? What would be a reasonable amount of pay 
per N · m or ft · lb? This way you are paying for the actual work done! 
 
PE3 (Practice Problem). Let y = u2 and u = 3x. Find y = y(x) and dy/dx. Now calculate 
dy/dx from the chain rule (dy/du)(du/dx). Do your answers agree? 
 
To allow for non-constant situations we use the calculus in applying a force F(x) for an 
infinitesimal distance dx and do an integral. We will take the force aligned with x and 
write 

( )W F x dx= ∫ . 

Lets apply a force to a mass in outer space from rest and then let go of it. What is the 
work we do? 
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Do you like our tricks with the chain rule, differentials, and changing the integration 
variable? This result is called the work-energy theorem, You do work on the mass and 
this work goes into energy in the form of motion. So we define the energy due to the 
work we did as the kinetic energy since the mass is now moving through space. 

21

2
E mv= . 

If you apply a force on an already moving object, the work you do is expressed as a 
difference of kinetic energies. See below for the more general case of the work-energy 
theorem. 
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Applying the work definition to the Lorentz force, we use the dot product to project the 
component of force along the direction of motion. 
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The last integral is zero, using a chain rule and cycle trick for the triple cross product. 
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Since the magnetic field affects the direction of the charge's velocity rather than its 
magnitude, the magnetic field does no work on the charge. Our work-energy theorem 
from classical mechanics takes this form in electromagnetic theory. 

 

2
2 2

2 1
1

1 1

2 2
W q E d r mv mv

→

= ⋅ = −∫
�

 

E5. Four-Vectors. 
 
The world is four dimensional. You need three spatial coordinates and one time 
coordinate. So we make a vector with four components where we put time first. But we 
need to have the same dimension for each coordinate so we use ct instead of t. 
 

( , , , )x ct x y zµ =  and ( , , , )dx cdt dx dy dzµ =  

 
Don't worry why we are using superscripts here. The length of the vector in four 
dimensions is given by taking the squares and inserting a relative minus sign between 
the time and spatial quadratics. We are using the convention here to put the minus with 
the spatial coordinates. You could put the minus in front of the time like we did before 
when we squared ict. 

2 2 2 2 2 2ds c dt dx dy dz= − − − . 

 
This is invariant. If we put an object in a primed frame and do not let it move around in 
that frame, then we have dx' = dy' = dz' = 0. We can then write 
 

2 2 2 2 2 2 2 2
( ') ( ') ( ') ( ') ( ')ds c dt dx dy dz c dt= − − − = , and this must equal 

 
2 2 2 2 2 2ds c dt dx dy dz= − − − . 

 

Therefore, 
2 2 2 2 2 2 2 2

( ')ds c dt c dt dx dy dz= = − − − . The differential time interval 

'dt dτ≡  is called the proper time since it is the time of the clock in its own frame. 
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A compact result is 
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Do you recognize this? How about in the following forms? 
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It is the differential form of our time-dilation formula. Now we define a special four-

velocity u
µ

 by differentiating our four-vector by the proper time. Here is our four-vector: 

( , , , )x ct x y zµ = . 

 
Take the derivative with respect  to τ  we get 
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It is common practice to define gamma such that 2
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−
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Then we have ( , )
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. You are free to roam in space and have speed v
�

 

in the spatial dimensions but you are force to be pulled forward in the time dimension at 

the speed of light since 
0

u c= . 
 
The four-momentum is defined by multiplying the four-velocity by the mass m. 
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Einstein was led to using the special four-momentum to replace the classical p = mv 
since he showed that this momentum would be conserved.  Also, by taking the 
derivative with respect to the proper time you have no ambiguity in the time. The proper 
time is unique, the value the clock reads in the frame it is in. The "length" of each four-
vector is invariant from frame to frame. 

The four-vectors ( , )x ct r
µ

=
�

 and ( , )p mc mv
µ γ=

�

. Now define  ( , )x ct rµ = −
�

 

and ( , )p mc mvµ γ= −
�

. Then we can give the lengths of the four-vectors as 
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µ τ≡ − =  (with the Einstein summation convention), 

 

2

2 2 2 2 2 2 2 2 2

2 2

2

1
1

1

v
p p m c m v m c m c

v c

c

µ

µ γ
 

 = − = − =  
 −

. 

 
The first gives the proper time squared as the invariant and the second one is the mass 
squared as the invariant with the speed of light squared in there too. 

 
E6. Work and E = mc2 (Review from Modern Physics). 
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In one spatial dimension we have 
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Then, the work on pushing a mass in outer space (which eliminates friction) is 
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Use chain-rule and differential tricks similar to those that we did for the classical case to 
derive the following equivalent form for the work. 
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Now we will use the integration-by-parts trick. You can remember this trick from the 
product rule of differentiation given below. 
 

( )d fg df dg
g f
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So you can move the derivative off the g here and move it to the f. 
 
PE4 (Practice Problem). Use this trick to show the following. 
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Note that your first integral is no problem as you have a perfect differential. Do the 
second integral using conventional methods. Do not look this integral up as you can do 
it easily with conventional methods. Put in your limits of integration which we take from 
speed 0 to some speed v as we apply the force to the mass initially at rest. 
 
PE5 (Practice Problem). Show that you get 
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PE6 (Practice Problem). Work out you previous result to arrive at, 
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Therefore, 
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. Note immediately that if the speed 0v = , your 

expression 
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You still have energy 
2

E mc=  when the mass is at rest. This is called the rest 
energy. The kinetic energy KE according to Einstein is then the total energy for a 
moving mass minus the energy it has when it is at rest. 
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PE7 (Practice Problem). Show that a Taylor Series expansion on the first term in 
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−
 will lead to the result that at slow speeds Einstein's 

relativistic version of the work-energy theorem reduces to Newton's: 
21
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E7. Energy, Mass, Momentum Triangle (Deriving with Four-Vectors). 
 
You probably saw the "cute triangle" we are going to derive here, but we will do it with 
our four-vector notation. We saw earlier that the four-momentum is 
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Check out 
0p mcγ= , What's this? Well, you just discovered in the previous section 

that 
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momentum is related to the energy. Four dimensions in spacetime means space and 
time while four dimensions in the momentum arena means energy and momentum. 
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=
�
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In the rest frame, ( ,0)
E

p
c

µ
=

�

. Think of Energy / c as "momentum in time." 

Review of our invariant equations. We found earlier that 
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which we can write as 
 

2 2 2 2 4E p c m c− =      and     
2 2 4 2 2E m c p c= + . 

 
You can remember the formula 
 

2 2 4 2 2E m c p c= +  

by a cute right triangle. 

 

At rest, the angle is zero and 
2

E mc= . 
 

At the relativistic extreme the angle is 90° and E pc= , which is true for light. 


