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Electromagnetic Theory 
Prof. Ruiz, UNC Asheville, doctorphys on YouTube 
Chapter I Notes. The Maxwell Equations in Differential Form 

I1. The Maxwell Equations in Differential Form 
 
We will now transform the integral form of the Maxwell equations into differential form. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. The First Maxwell Equation 

0

Q
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ε
⋅ =∫∫
�� ���

�  

Express the left side using the Divergence Theorem. 
 

V

E dA E dV⋅ = ∇ ⋅∫∫ ∫∫∫
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Express the right side with the volume charge density. 
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A rigorous analysis requires us to write it this way: 
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Then we state that since the volume integration is arbitrary, i.e., we can take different 
volumes, the integrand must vanish to make the equation true in general. 

 
Arbitrary volumes mean that the following 
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ρ

ε
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��

 

 
implies 

0

0E
ρ

ε
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��

, 

 
which leads to 

0

E
ρ

ε
∇ ⋅ =
��

. 

 
This the differential form for Gauss's Law, which in turn is equivalent to Coulomb's Law. 

 
2. The Second Maxwell Equation 

 
This one is easy after doing the first. Since 
 

0
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E dA

ε
⋅ =∫∫
�� ���

�  becomes 
0

E
ρ

ε
∇ ⋅ =
��

, 

 

0B dA⋅ =∫∫
�� ���

�  becomes 0B∇ ⋅ =
��

. 

 
No magnetic field lines can originate at a point since there are no magnetic monopoles. 
Therefore, there are no diverging magnetic field lines from a point. This is a most 
elegant statement that there are no magnetic monopoles. The magnetic field tends to 
loop and the presence of a north and south pole for a magnet means we have a 
cancellation effect. In other words, there is no such thing as magnetic charge, at least 
so far as we know. 
 
If we ever find a magnetic monopole, then this basic equation will have to be modified. 
And if so, which other Maxwell equation needs to be modified to account for a current of 
moving monopoles? Your answer can be checked by perfect symmetry in the Maxwell 
equations: charge, electrical current, monopoles (magnetic charge), and magnetic 
currents 



Michael J. Ruiz, Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License 

 

3. The Third Maxwell Equation 

 
What about this one? 

 

0 0 0
E

d
B dl I

dt
µ µ ε

Φ
⋅ = +∫
�� ��

�  

 
We use Stoke's theorem for the left side. 

 

( )
A

B dl B dA⋅ = ∇× ⋅∫ ∫∫
�� �� �� ���

�  

 

Then we need to express the right side 0 0 0
E

d
I

dt
µ µ ε

Φ
+  as an area integral. We 

use the definition of the current density. If you are hazy on this from your intro physics 
course, we are led to it here. The mathematics guides us and suggests the following 
definition: 

I JA=    and in general   
A

I J dA= ⋅∫∫
�� ���

. 

The flux  EΦ  is no problem because an area is involved in its definition already: 

 

E EAΦ =    and in general   E

A

E dAΦ = ⋅∫∫
�� ���

. 

 
Putting this all together: 
 

0 0 0
( )

A A A

d
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. 

 
We move the derivative inside the integral since the integration is over area and has 
nothing to do with time. We write as a partial derivative as E depends on x, y, z, and t. 
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We now rewrite 

0 0 0
( )

A A A
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as 
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 ∂
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Since the surface area chosen is arbitrary, the integrand must vanish to make this true 
in general. This gives us the third Maxwell equation. 
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t
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∂
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4. The Fourth Maxwell Equation 
 
The last Maxwell Equation is easy since it is similar and simpler than the third. Since 
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The Maxwell Equations in Integral Form (left) and Differential Form (right) 

 
 
 
 
 
 
 
 
 
 
 
 
 
I2. Insight into the Divergence 

Let's see if we can gain some insight into the divergence by investigating 
0

E
ρ

ε
∇ ⋅ =
��

 

where we have a point charge. Therefore, 2

0

1 1

4
E r

rπε

∧

=
��

. We want to do the 

calculation in Cartesian coordinates, so we express r
∧

 in terms of i
∧

, j
∧

, and k
∧

.  

 
Courtesy Andeggs, Wikimedia. 
 
From the left figure you see we 
can form the vector along r by 
setting 

r x i y j z k
∧ ∧ ∧

= + +
�

. 

 
The unit vector along the radial 
direction is then 
 

x y z
r i j k

r r r

∧ ∧ ∧ ∧

= + +  

Note that 1r r
∧ ∧

⋅ = . Why? 
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The electric field 2

0

1 1

4
E r

rπε

∧

=
��

 with 

x y z
r i j k

r r r

∧ ∧ ∧ ∧

= + +  becomes. 

 

2 3 3 3

0 0

1 1 1

4 4

x y z x y z
E i j k i j k

r r r r r r rπε πε

∧ ∧ ∧ ∧ ∧ ∧   
= + + = + +      

��

. 

 

We could use 
2 2 2 2

r x y z= + +  now, but it is best not to do this in order to keep our 

notation concise. Now we are ready to take the divergence. 
 

3 3 3
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The three derivatives are similar so work with the first one. 
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= + = +
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The two parts of the second term are 3 4

1 3
( )

x
x

r r r

∂
= −

∂
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2 2 2

2 2 2

1 1
(2 )
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r x
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∂ ∂
= + + = =

∂ ∂ + +
. 

 
PI1 (Practice Problem).  Show this quickly by implicit differentiation of r2. 

Putting it all together, 

2

3 3 5

1 3
( )

x x

x r r r

∂
= −

∂
. Finally we get the divergence below. 
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But Wait! Why didn't we get 
0

E
ρ

ε
∇ ⋅ =
��

 as there is charge somewhere? 

You will see why. Read on. 
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Let's try inside a uniform sphere of charge. From before we know 
 

0

Q
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ε
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⋅ =∫∫� , 
2 3

0

1 4
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,  and 
0
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∧
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Then, 
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3 3
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r r r

ρ ρ

ε ε

∧ ∧ ∧ ∧ ∧ ∧   
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0 0 0

(3)
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ρ ρ ρ

ε ε ε

∂  ∂ ∂ ∂ ∂ ∂
∇ ⋅ = + + = + + = = ∂ ∂ ∂ ∂ ∂ ∂ 
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Now we get 
0

E
ρ

ε
∇ ⋅ =
��

 and that's because charge density is actually at our location. 

 
This is a profound point! We now correctly understand the first Maxwell equation! 

 

Outside the charge in space, away from the charge, you get 0E∇ ⋅ =
��

 even though 
you have an electric field out there. This is a deep discovery into the meaning of the 
differential form for Gauss's Law. In empty space, you get zero, but when you are in the 
charge-density region you get the nonzero value. 
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I3. Insight into the Curl 
 
Let's see if we can gain some insight into the curl by investigating 

 

0 0 0

E
B J

t
µ µ ε

∂
∇× = +

∂

��
�� ��

 where  0
E

t

∂
=

∂

��

. We only have current in a wire. 

 
Image Credit: Wikimedia, from User: Stannered from 
an original by User: Wapcaplet. 
 
Recall our magnetic field produced by a current in a 
wire. 

0

2

I
B

r

µ
θ

π

∧

=
��

 

 

We will calculate the curl in 0
B Jµ∇× =
�� ��

 

calculation in Cartesian coordinates. This means we 

need to express θ
∧

 in terms of i
∧

 and j
∧

. 

 
 

You find the usual Cartesian 

unit vectors i
∧

 and j
∧

 in the 

left figure as well as the polar 

unit vectors r
∧

 and θ
∧

, 
 
All these unit vectors point in 
increasing directions of their 
respective coordinates. 
 
From the right triangle in red, 
we arrive at the expression of 

θ
∧

 in terms of i
∧

 and j
∧

: 

sin cosi jθ θ θ
∧ ∧ ∧

= − + , which also has the required unit length. Why? 
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While we are here, we can obtain the result cos sinr i jθ θ
∧ ∧ ∧

= + . Our two 

equations are below. 

cos sinr i jθ θ
∧ ∧ ∧

= +  

sin cosi jθ θ θ
∧ ∧ ∧

= − +  

 

Note that 1r r θ θ
∧ ∧ ∧ ∧

⋅ = ⋅ =  and 0r θ
∧ ∧

⋅ = . Below are your regular transformations 
between polar and Cartesian coordinates which you encountered in math at some point 
before. 
 

cosx r θ=  siny r θ=  

 

2 2
r x y= +  

1
tan

y

x
θ −=  

PI2 (Practice Problem).  Find i
∧

 and j
∧

 in terms of r
∧

 and θ
∧

. 

 

Expressing 
0

2

I
B

r

µ
θ

π

∧

=
��

 with sin cosi jθ θ θ
∧ ∧ ∧

= − + , we obtain 
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��

. 

 

Now use cosx r θ=  and siny r θ= , i.e., cos
x

r
θ =  and sin

y

r
θ = . 
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Take the curl. Note that r in this case is the polar coordinate and not the spherical 
coordinate we encountered in the Gaussian analysis. 

0 0

2 2

2 2
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2 2
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i j k

I I x y
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y x
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µ µ

π π

∧ ∧ ∧
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−
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PI3 (Practice Problem).  Why is there only a z-component for this curl? 

 

First consider 2 2 2 2 3

1 1 1 2
( ) ( ) ( )

x r
x x

x r r x r r r x

∂ ∂ − ∂
= + = +

∂ ∂ ∂
 

 

The last derivative is 

r x

x r

∂
=

∂
, using 

2 2 2
r x y= +  and 2 2 2rdr xdx ydy= + . 

 
This last step is the implicit-differentiation trick in two dimensions x and y. 

 

Then 

2
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∂ −
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∂
 and 
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0

2 4 2 4
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2
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µ
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2 2 2

0 0

2 4 2 4

2 ( ) 2 2
2 0
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I Ix y r
B k k
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µ µ

π π

∧ ∧   +
∇× = − = − =   
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But Wait! Why didn't we get 0
B Jµ∇× =
�� ��

 as there is current somewhere? 

 
You will see why. Read on. 
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Let's try inside a uniform wire of current. From before we know 
 

0
B dl Iµ
→ →

⋅ =∫� , 
2

0
(2 )B r J rπ µ π= , and 

0

2

J
B r

µ
θ
∧

=
��

. 

Using sin cosi jθ θ θ
∧ ∧ ∧

= − + , we have 
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J J
B r r i j

µ µ
θ θ θ
∧ ∧ ∧ 

= = − +  
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0 0sin cos
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J J
B r i r j y i x j

µ µ
θ θ

∧ ∧ ∧ ∧   
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Then, 

0 0 0 2
2 2 2

0

i j k

J J Jx y
B k k

x y z x y

y x

µ µ µ

∧ ∧ ∧

∧ ∧ ∂ ∂ ∂ ∂ ∂
∇× = = + = ⋅ ∂ ∂ ∂ ∂ ∂ 

−
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0
B J kµ

∧

∇× =
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0
B Jµ∇× =
�� ��

 

 
We now get the nonzero current density since we are at a point where current density 
actually exists. 
 

We now correctly understand the Maxwell equation wit current sources! 
 


