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Electromagnetic Theory 
Prof. Ruiz, UNC Asheville, doctorphys on YouTube 
Chapter N Notes. Poisson's Equation 

N1. Review of Cylindrical Coordinates 

 
Figure Adapted from Professor Kurt E. Oughstun, School of Engineering 
College of Engineering & Mathematical Sciences, University of Vermont 

 
From before we have the following with the notation given above. 
 

cosx r θ=      siny r θ=      
2 2

r x y= +      tan
y

x
θ =  

cos sinr i jθ θ
∧ ∧ ∧

= +      sin cosi jθ θ θ
∧ ∧ ∧

= − +      k k
∧ ∧

=  

 
Professor Oughstun derives the gradient in cylindrical coordinates from scratch in his 
EE 141 Electromagnetic Field Theory I course. This is nice to see as it gives us 
confidence that our general result from curvilinear coordinates is correct. We will do this 
now with the additional feature that we will NOT look up any derivatives. 
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This is the kind of workout I was referring to when I gave you the Laplacian derivation 
for a summer project. Watch below for the workout. Before doing the Laplacian you 
might do the following gradient derivation in spherical coordinates. 

cosx r θ=      siny r θ=      
2 2

r x y= +      tan
y

x
θ =  

cos sinr i jθ θ
∧ ∧ ∧

= +      sin cosi jθ θ θ
∧ ∧ ∧

= − +      k k
∧ ∧

=  

 

We want to check 

1f f f
f r k

r r z
θ

θ

∧ ∧ ∧∂ ∂ ∂
∇ = + +

∂ ∂ ∂
. 

 

Start with 

f f f
f i j k

x y z

∧ ∧ ∧∂ ∂ ∂
∇ = + +

∂ ∂ ∂  and substitute things. 

 

f r f f r f f
f i j k

r x x r y y z

θ θ

θ θ

∧ ∧ ∧ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
∇ = + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

 

PN1 (Practice Problem). Show cos sini rθ θ θ
∧ ∧ ∧

= −  and sin cosj rθ θ θ
∧ ∧ ∧

= + . 

 

PN2 (Practice Problem). Show cos
r x

x r
θ

∂
= =

∂
 and 

sin
r y

y r
θ

∂
= =

∂ . 

 

Note that 
1 1

tan tan
y

u
x

θ − −= ≡ . Instead, consider 

tan

tan

d

x d x

θ θ θ

θ

∂ ∂
=

∂ ∂
. 

 

1 1 2

2

tan ( 1)( sin )
sin cos cos cos sin 1 tan

cos

d d

d d

θ θ
θ θ θ θ θ θ

θ θ θ
− − − −

 = = + = +   

 

Now we consider the "flip" derivative: 2 2

1 1

tan 1 tan 1 ( / )

d

d y x

θ

θ θ
= =

+ + . 

 

2 2 2

1 tan 1

1 ( / ) 1 ( / )

y

x y x x y x x

θ θ∂ ∂  
= = − ∂ + ∂ +  

 from tan
y

x
θ =  
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2 2 2 2 2

1 sin 1
sin

1 ( / )

y y r

x y x x x y r r

θ θ
θ

∂ − 
= − = = − = − ∂ + + 

 

 

PN3 (Practice Problem). Show that 

1
cos

y r

θ
θ

∂
=

∂ . 

 
Summary of what we have so far. 
 

f r f f r f f
f i j k

r x x r y y z

θ θ

θ θ

∧ ∧ ∧ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
∇ = + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

 

cos sini rθ θ θ
∧ ∧ ∧

= −      sin cosj rθ θ θ
∧ ∧ ∧

= +  

 

cos
r x

x r
θ

∂
= =

∂
     

sin
r y

y r
θ

∂
= =

∂      

1
sin

x r

θ
θ

∂
= −

∂
     

1
cos

y r

θ
θ

∂
=

∂  

 

1
cos ( sin ) (cos sin )

f f
f r

r r
θ θ θ θ θ

θ

∧ ∧∂ ∂ 
∇ = + − − ∂ ∂ 

 

 

 

1
sin ( cos ) (sin cos )

f f f
r k

r r z
θ θ θ θ θ

θ

∧ ∧ ∧∂ ∂ ∂ 
+ + + + ∂ ∂ ∂ 

 

 
PN4 (Practice Problem). Show that the above equation gives the expected result 
shown below. 

1f f f
f r k

r r z
θ

θ

∧ ∧ ∧∂ ∂ ∂
∇ = + +

∂ ∂ ∂
 

 
This is what we get using the curvilinear formula with the proper scale factors. 

 

1 2 3

1 1 2 2 3 3

1 1 1f f f
f e e e

h q h q h q

∧ ∧ ∧∂ ∂ ∂
∇ = + +

∂ ∂ ∂  
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N2. Cylinder with Constant Charge. He we do the infinitely long cylinder of radius a 
with constant charge using Gauss's Law from Intro Physics. Then in the next section we 
do it the long way using Poisson's equation from our course. Gauss's Law is 

 

0

inQ
E dA

ε
⋅ =∫∫
�� ���

� . 

 
The charge density is 
 

0
( )rρ ρ=  

 

for r a≤  and there is 

no charge for r a> . 
 
Remember that the 
cylinder can be taken to 
be infinitely long. 
 

Gauss's Law for r a< : 

2

0

0

(2 )
in

r l
E rl

ρ π
π

ε
=

 using a Gaussian cylindrical surface 

defined by a radius r  and length l . We get 
0

0

( )
2

in

r
E r

ρ

ε
=

 where "in" means inside. 

For r a> , 

2

0

0

(2 )
out

a l
E rl

ρ π
π

ε
=

, giving for outside: 

2

0

0

1
( )

2
out

a
E r

r

ρ

ε
=

. 

Note that 
0

0

( )
2

in

a
E a

ρ

ε
=

 equals 

2

0 0

0 0

1
( )

2 2
out

a a
E a

a

ρ ρ

ε ε
= =

. 

 

The potential is related to the electric field as 

( )
( )

dV r
E r

dr
= −  since the electric 

field is radial. Then, ( ) ( )V r E r dr const= − +∫ . 

2

0 0

0 0

( )
2 4

in

r r
V r dr A

ρ ρ

ε ε
= − = − +∫  
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To match the boundary condition ( ) 0V a =  we need 

2

0

0

0
4

a
A

ρ

ε
− + =

, which gives 

2

0

0
4

a
A

ρ

ε
=

. Then the potential function on the inside will match at the boundary. 

Our result is 

2 2

0 0

0 0

( )
4 4

in

a r
V r

ρ ρ

ε ε
= −

, i.e.,  

2 2

0

2

0

( ) 1
4

in

a r
V r

a

ρ

ε

 
= − 

 
. 

Note that we can call the zero potential reference anywhere we like just as we do in 
mechanics with mgh for gravitational potential energy near the Earth. You can take h = 
0 to be the ground or the top of the table. Here we choose the surface of the cylinder to 
have potential zero. 

For the outside, 

2

0

0

1
( )

2
out

a
E r

r

ρ

ε
=

 and 

2

0

0

1
( )

2

a
V r dr const

r

ρ

ε
= − +∫ . 

2

0

0

( ) ln
2

out

a
V r r B

ρ

ε
= − +

 

To match at the boundary, 

2

0

0

( ) ln 0
2

out

a
V a a B

ρ

ε
= − + =

, which gives 

2

0

0

ln
2

a
B a

ρ

ε
=

. The potential on the outside is then 

[ ]
2 2

0 0

0 0

( ) ln ln ln
2 2

out

a a r
V r r a

a

ρ ρ

ε ε
= − − = −

. 

Nice to see the dimensionless argument in that logarithm. A summary is below. 
 

  
0

0

( )
2

in

r
E r r

ρ

ε

∧

=
��

   

2

0

0

1
( )

2
out

a
E r r

r

ρ

ε

∧

=
��

 

  

2 2

0

2

0

( ) 1
4

in

a r
V r

a

ρ

ε

 
= − 

 
 

2

0

0

( ) ln
2

out

a r
V r

a

ρ

ε
= −

 

 
Now we proceed to the upper-level version, using techniques from our course to get the 
same answers we have just found using methods from introductory physics. 
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N3. Poisson's and Laplace's Equations. The upper-level definition of the potential 
involves the gradient. 

E V= −∇
��

 

The first Maxwell equation 
0

E
ρ

ε
∇ ⋅ =
��

 leads to Poisson's equation, 

2

0

V
ρ

ε
∇ = −

, since 
2E V V∇ ⋅ = −∇ ⋅∇ = −∇

��

. 

 
In cylindrical coordinates, Poisson's equation is 

 

2 2

2 2 2

0

1 1
( )

V V V
r

r r r r z

ρ

θ ε

∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂  

 
We now do the same problem the 
longer way to get practice with 
solving Poisson's equation. 
 
Outside the cylinder the charge 
density is zero and Poisson's 
equation reduces to Laplace's 
equation. 
 
On the inside, the charge density 
function is a constant: 
 

0
( )rρ ρ= . 

 
This means very nice symmetry and much simplification. The potential is only a function 
of r. 
 

( , , ) ( )V V r z V rθ= =  

 
Therefore, Poisson's equation will not have the angle and z derivatives since they result 
in zero. We can also replace partial derivatives with the standard derivatives as our 
problem reduces to just the r variable.  
 

0

0

1
( )

d dV
r

r dr dr

ρ

ε
= −
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Inside - Solving Poisson's Equation: 
0

0

1
( )

d dV
r

r dr dr

ρ

ε
= −

 

 

0

0

( )
d dV

r r
dr dr

ρ

ε
= −

 

 

2

0

0
2

dV r
r A

dr

ρ

ε
= − +

, where A  is a constant. 

 

0

0
2

dV A
r

dr r

ρ

ε
= − +

 

 
We integrate again introducing a second constant B. 

 

20

0

( ) ln
4

inV r r A r B
ρ

ε
= − + +

 

Note there are two solutions for a second-order differential equation. We have the 
quadratic function and the logarithm. But the logarithm shoots off to minus infinity when 
r = 0. Therefore, A must be 0. This analysis involves looking at a boundary condition. 
Though we do not know the exact value of the potential at r = 0, we do know it can't 
shoot off to infinity. This leaves 
 

20

0

( )
4

inV r r B
ρ

ε
= − +

 

 
We determine B from the boundary condition at r = a. 
 

20

0

( ) 0
4

inV a a B
ρ

ε
= − + =

     and     
20

0
4

B a
ρ

ε
=

 

 

2 2

0

2

0

( ) 1
4

in

a r
V r

a

ρ

ε

 
= − 

 
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Outside - Solving Laplace's Equation: 

1
( ) 0

d dV
r

r dr dr
=  

 

( ) 0
d dV

r
dr dr

=  

 

dV
r C

dr
= , where C  is a constant. 

 

dV C

dr r
=  

 
We integrate introducing a second constant D. 

 

( ) ln
out

V r C r D= +  

 
Here the logarithm does not get discarded since r is never zero for the outside region. 
 
We determine D from the boundary conditions. Watch how when we do this that 
logarithm of r will become a logarithm of a dimensionless quantity. We know we can't 
take a log of a distance in meters. We take logs of pure numbers. If we do our physics 
right, the math will come out correctly. 
 

( ) ln
out

V r C r D= +  

 

( ) ln 0
out

V a C a D= + =  

 

lnD C a= −  
 

( ) ln ln
out

V r C r C a= −  

 

( ) lnout

r
V r C

a
=  

 
We arrive at the natural logarithm of a dimensionless quantity as expected. 
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Summary: 
 

  

2 2

0

2

0

( ) 1
4

in

a r
V r

a

ρ

ε

 
= − 

 
 ( ) lnout

r
V r C

a
=  

 
But what about C? We find C by matching the electric fields at the boundary. Matching 
electric fields means we match the derivatives of the potential at the boundary. 
 

( ) ( )in out

r a r a

dV r dV r

dr dr= =

=
 

 

With 

r
u

a
= , note that 

ln( / ) ln 1 1 1d r a d u du du a

dr du dr u dr r a r
= = = = . 

 
Using this result for the derivative on the outside, we obtain 
 

2

0

2

0

2 1

4 r a r a

a r
C

a r

ρ

ε = =

 
− =    

 
2

0

2

0

2 1

4

a a
C

a a

ρ

ε

 
− =  

 

 

2 2

0

2

0

2

4

a a
C

a

ρ

ε

 
− = 
 

     and     

2

0

0
2

a
C

ρ

ε
= −

 

 

Substituting in for the constant in ( ) lnout

r
V r C

a
=  leads to the second equation 

below. The first equation is our result for the inside which we arrived at earlier. 
 
 

2 2

0

2

0

( ) 1
4

in

a r
V r

a

ρ

ε

 
= − 

 
     and     

2

0

0

( ) ln
2

out

a r
V r

a

ρ

ε
= −

. 
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Let's double check that the electric fields come out right taking the gradients. 

 
We have our potentials. 
 

2 2

0

2

0

( ) 1
4

in

a r
V r

a

ρ

ε

 
= − 

 
 

 

        

2

0

0

( ) ln
2

out

a r
V r

a

ρ

ε
= −

 

 
The electric field is found by the 

negative gradient E V= −∇
��

. 
 
We arrived at the gradient in cylindrical coordinates from our general formulas in 
curvilinear coordinates and calculating this one out in detail in our first section of this 
chapter. The result is 

1f f f
f r k

r r z
θ

θ

∧ ∧ ∧∂ ∂ ∂
∇ = + +

∂ ∂ ∂
. 

 
For our case there is no dependence on the angle or z-direction. So we have the 
simpler version with a regular derivative as there is only one variable, namely r. 
 

( )
( )

dV r
V r r

dr

∧

∇ =  

PN5 (Practice Problem). Use E V= −∇
��

 to show that our potentials 
 

2 2

0

2

0

( ) 1
4

in

a r
V r

a

ρ

ε

 
= − 

 
     and     

2

0

0

( ) ln
2

out

a r
V r

a

ρ

ε
= −

 

 
give us what we already know, namely, 

 

0

0

( )
2

in

r
E r r

ρ

ε

∧

=
��

     and     

2

0

0

1
( )

2
out

a
E r r

r

ρ

ε

∧

=
��

. 


